University of Nebraska-Lincoln | College of Engineering | Electrical & Computer Engineering

Journal Publications

("*" denotes corresponding author)


  • L.L. Hu and M. Han*, "Reduction of laser frequency and intensity noise in phase-shifted fiber Bragg grating acoustic emission sensor system," IEEE Sensors Journal (accepted).
  • Y.J. Lu and M. Han*, "Fiber-optic temperature sensor using dual Fabry-Perot cavities filled with gas of different pressure," Sensors and Actuators A 261, 229-234 (2017).
  • G.G. Liu, Q.W. Sheng, D. Dam, J. Hua, W.L. Hou, and M. Han*, "Self-gauged fiber-optic micro-heater with operation temperature above 1000 °C," Optics Letters 42, 1412-1415 (2017).
  • Q. Zhang, Y. Zhu, X. Luo, G.G. Liu, and M. Han*, "Acoustic emission sensor system using chirped fiber-Bragg-grating Fabry-Perot interferometer and smart feedback control," Optics Letters 42, 631-634 (2017).


  • G.G. Liu, Q.W. Sheng, W.L. Hou, and M. Han*, “Influence of fiber bending on wavelength demodulation of fiber-optic Fabry-Perot interferometric sensors,” Optics Express 24, 26732-26744 (2016).

  • G.G. Liu, Q.W. Sheng, W.L. Hou, and M. Han*, “High resolution, large dynamic range fiber-optic thermometer with cascaded silicon Fabry-Perot cavities,” Optics Letters 41, 5134-5137 (2016).

  • A.K. Singh, Y. Zhu, M. Han, and H. Huang*, “Simultaneous load and temperature measurement using Lophine – coated Fiber Bragg Gratings,” Smart Materials and Structures 25, 115019 (2016).

  • G.G. Liu, Q.W. Sheng, W.L. Hou, and M. Han*, “An optical fiber vector flow sensor based on silicon Fabry-Perot interferometric array,” Optics Letters 41, 4629-4632 (2016).

  • M.L. Reinke*, M. Han, G.G. Liu, G. van Eden, M. Haverdings, R. Evenblij, and B. Stratton, “Development of plasma bolometers using fiber-optic temperature sensors,” Review of Scientific Instruments 87, 11E708 (2016).

  • L.L. Hu, G.G. Liu, Y.P. Zhu, X.Y. Luo, and M. Han*, “Laser frequency noise cancellation in phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics Journal 8, 6801108 (2016).


  • Q. Zhang, L.L. Hu, Y.F. Qi, G.G. Liu, N. J. Ianno, and M. Han*, "Fiber-optic refractometer based on a phaseshifted fiber Bragg grating on a side-hole fiber," Optics Express 23, 16750-16759 (2015).

  • G.G. Liu, W.L. Hou, W. Qiao, and M. Han*, "A fast-response fiber-optic anemometer with temperature self-compensation," Optics Express 23, 13562-13570 (2015).

  • G.G. Liu and M. Han*, "Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer," Optics Letters 40, 2461-2464 (2015).

  • G.G. Liu, M. Han*, and W.L. Hou, "High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Perot cavity," Optics Express 23, 7237-7247 (2015).

  • Y. Liu, Z.G. Liu, S.M. Chen, M. Han, and W. Peng*, "Micro-capillary based high-sensitivity and wavelength-tunable optical temperature sensor," IEEE Photonics Technology Letters 27, 447-450 (2015).

  • G.G. Liu, E. Sandfort, L.L. Hu, T.Q. Liu, and M. Han*, "Theoretical and experimental investigation of an intensity-demodulated fiber-ring-laser ultrasonic sensor system," IEEE Sensors Journal 15, 2848-2845 (2015).


  • T. Q. Liu, L. L. Hu, and M. Han*, "Adaptive ultrasonic sensor using a fiber ring laser with tandem fiber Bragg gratings," Optics Letters 39, 4462-4465 (2014).

  • Y.J. Lu, M. Han*, and J.J. Tian, "Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure," IEEE Photonics Technology Letters 26, 757-760 (2014).

  • W. Peng*, Y. Liu, X.P. Zhang, F. Cheng, and M. Han, "High sensitivity evanescent field refractometer based on modal interference in micro-capillary wall," IEEE Sensors Journal 14, 430-435 (2014).


  • T. Q. Liu, L. L. Hu, and M. Han*, "Multiplexed fiber-ring laser sensors for ultrasonic detection," Optics Express 21, 30473-30480 (2013).
  • M. Han*, T.Q. Liu, L.L. Hu, and Q. Zhang, "Intensity-demodulated fiber-ringlaser sensor system for acoustic emission detection," Optics Express 21, 29269-29276 (2013).
  • Y.B. Yuan, Q.F. Dong, B. Yang, F.W. Guo, Q. Zhang, M. Han, and J.S. Huang*, "Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter," Scientific Reports 3, 2707 (2013).
  • Q. Zhang, N. J. Ianno, and M. Han*, "Fiber-optic refractometer based on etched high-Q π-phase-shifted fiber Bragg grating," Sensors 13, 8827-8834 (2013).
  • Y. Liu, W. Peng*, X.P. Zhang, Y.Z. Liang, Z.F. Gong, and M. Han, "Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology," IEEE Photonics Technology Letters 25, 1246-1249 (2013).
  • J.J. Tian, Y.J. Lu, Q. Zhang, and M. Han*, "Microfluidic refractive index sensors based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers," Optics Express 21, 6633-6639 (2013).
  • J.J. Tian, Q. Zhang, and M. Han*, "Distributed fiber-optic laser-ultrasound generation based on ghost mode of tilted fiber Bragg gratings," Optics Express 21, 6109-6114 (2013).


  • J.J. Tian, Q. Zhang, T. Fink, H. Li, W.Peng, and M. Han*, "Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure," Optics Letters 37, 4672-4674 (2012).
  • Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han*, "Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber," IEEE Photonics Technology Letters 24, 1519-1522 (2012).
  • F.W. Guo, T. Fink, M. Han*, L. Koester, J. Turner, and J.S. Huang, "High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm," Optics Letters 37, 1505-1507 (2012).
  • T.Q. Liu and M. Han*, "Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection," IEEE Sensors Journal 12, 2368-2373 (2012).


  • C. Raml, X. N. He, M. Han*, D. R. Alexander, and Y. F. Lu, "Raman spectroscopy based on a single-crystal sapphire fiber," Optics Letters 36, 1287-1289 (2011).


  • D.Y. Wang*, Y.M. Wang, M. Han, J.M. Gong, and A. Wang, "Fully-distributed fiber-optic biological sensing," IEEE Photonics Technology Letters 22, 1553-1555 (2010).
  • J.J. Wang*, B. Dong, E. Lally, J.M. Gong, M. Han, and A. Wang, "Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers," Optics Letters 35, 399-401 (2010).
  • M. Han*, F.W. Guo, and Y.F. Lu, "Optical fiber refractometer based on cladding-mode Bragg grating," Optics Letters 35, 100-102 (2010).

2009 and before

  • M. Han*, Y.J. Wang, Y.M. Wang, and A. Wang, "Fiber-optic physical and biochemical sensing based on transient and traveling long-period gratings," Optics Letters 34, 100-102 (2009)
  • B. Dong*, M. Han, L.Q. Sun, J.J. Wang, Y.J. Wang, and A. Wang, "Sulfur Hexafluoride-filled extrinsic Fabry-Perot interferometric fiber-optic sensors for partial discharge detection in transformers," IEEE Photonics Technology Letters 20, 1566-1568 (2008).
  • Y. Xu*, M. Han, A. Wang, Z.W. Liu, and J.R. Heflin, "Second order parametric processes in nonlinear silica microspheres," Physical Review Letters 100, 163905 (2008)
  • Y.X. Wang*, M. Han, and A. Wang, "Analysis of a high-speed fiber-optic spectrometer," Applied Optics 46, 8149-8158 (2007).
  • M. Han*, Y.J. Wang, and A. Wang, "Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing," Optics Letters 32, 2028-2030 (2007).
  • M. Han* and A. Wang, "Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient," Optics Letters 32, 1800-1802 (2007).
  • X.P. Chen*, M. Han, Y.Z. Zhu, B. Dong and A. Wang, "Implementation of loss-compensated recirculating delayed self-Heterodyne interferometer for ultra-Narrow laser linewidth measurement," Applied Optics 45, 7712-7717 (2006).
  • Y.X. Wang*, M. Han, and A. Wang, "A high speed fiber optic spectrometer for signal demodulation of inteferometric fiber optic sensors," Optics Letters 31, 2408-2410 (2006).
  • M. Han* and A. Wang, "Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems," Optics Letters 31, 1202-1204 (2006).
  • M. Han*, X.W. Wang, J.C. Xu, K.L. Cooper, and A. Wang, "Diaphragm-based extrinsic Fabry-Perot interferometric optical fiber sensor for acoustic wave detection under high background pressure," Optical Engineering 44, 060506 (2005).
  • M. Han* and A. Wang, "Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement," Applied Physics B-Lasers & Optics 81, 53-58 (2005).
  • M. Han* and A. Wang, "Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers," Applied Optics 43, 4659-4666 (2004).
  • M. Han* Y. Zhang, F.B. Shen, G.R. Pickrell, and A. Wang, "Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors," Optics Letters 29, 1736-1738 (2004).
  • Y. Wu, C.Y. Lou, M. Han, T. Wang, and Y.Z. Gao, "Effects of pulse chirp on supercontinuum produced in dispersion decreasing fibre," Chinese Physics 11, 578-582 (2002).
  • Y.H. Li, C.Y. Lou, M. Han, and Y.Z. Gao, "Detuning characteristics of the AM mode-locked fiber laser," Optical & Quantum Electronics 33, 589-597 (2001).
  • M. Han, C.Y. Lou, Y. Wu, G.Q. Chang, Y.Z. Gao, and Y.H. Li, "Generation of pedestal-free 10 GHz pulses from a comb-like dispersion profiled fiber compressor and its application in supercontinuum generation," Chinese Physics Letters 17, 806-808 (2000).
  • M. Han, C.Y. Lou, Y.H. Li, and Y.Z. Gao, "10 GHz, 2 ps, pedestal-free ultra-short pulse generation using DSF and dispersion-imbalanced nonlinear loop mirrors," Acta Physica Sinica 49, 751-755 (2000)